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A finite element solution procedure is presented for accurately computing time-harmonic
acoustic scattering by elastic targets buried in sediment. An improved finite element dis-
cretization based on trilinear basis functions leading to fourth-order phase accuracy is
described. For sufficiently accurate discretizations 100 million to 1 billion unknowns are
required. The resulting systems of linear equations are solved iteratively using the GMRES
method with a domain decomposition preconditioner employing a fast direct solver. Due
to the construction of the discretization and preconditioner, iterations can be reduced onto
a sparse subspace associated with the interfaces. Numerical experiments demonstrate
capability to evaluate the scattered field with hundreds of wavelengths.
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1. Introduction

We develop an efficient numerical method for computing time-harmonic acoustic wave scattering by an elastic object in
three-dimensional layered media. It is capable of modeling the scattering of sonar signals by undersea targets located in or
near the seabed in littoral environments with plane or rippled interface between water and sediment. One application for
such problems is the detection of hazardous or/and lost objects buried in sediment. For this purpose it is essential to have
a numerical approximation which can accurately predict the scattered field by such targets. Our model problem in this paper
is the scattering by a solid aluminum cylinder buried in sediment. A similar experimental test setup was used in [30] to per-
form measurements. This is an exterior problem which has to be truncated into a bounded domain for a finite element dis-
cretization; see Fig. 1.

We consider scattering problems in a frequency range in which the size of the computational domain is of the order of
100 wavelengths. The discretization has to have sufficiently many nodes per wavelength. In the considered frequency range
the phase (pollution) error of the solution with a second-order accurate discretization is large unless tens of nodes are used
per wavelength [20]. This would lead to huge systems of linear equations which are computationally intractable. Many ways
have been proposed to reduce the phase error; see [20], for example. We employ a generalization of the approach proposed
in [13] in which standard bilinear finite elements are used for two-dimensional Helmholtz problems together with a mod-
ified quadrature rule. This leads to fourth-order phase accuracy and a higher order approximation on orthogonal uniform
meshes for a constant speed of sound. Actually it coincides with the nine-point fourth-order compact finite difference
scheme [29] in the homogeneous medium. A related fourth-order finite difference method for the Helmholtz equation
was considered in [12]. The resulting matrix has exactly the same structure and complexity as the one obtained by using
the standard Gauss quadrature rule. As shown in Section 5.1 it drastically increases the performance and capability of our
finite element modeling. The scheme with eight points per wavelength sufficiently well achieves the resolution we need
and thus leads to a linear system with much smaller numbers of unknowns.
. All rights reserved.
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Fig. 1. The computational domain (P) and domain decomposition to the near-field (X) and far-field domains (PnX).
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The resulting system of linear equations is too large to be solved using a direct method. We propose an iterative solution
procedure with a decomposition preconditioner based on a domain embedding approach [15–17,21,22,24,26]. In our solu-
tion procedure the computational domain is decomposed into the near field subdomain which encloses an elastic target (the
interior box in Fig. 1) and the far-field subdomain (the rest of the rectangle computational domain P). In the far-field sub-
domain the discretization is based on an orthogonal uniform mesh which is locally adapted to the interface between the
water and sediment. We use a multiplicative domain decomposition, i.e. we develop a preconditioning method for the
resulting linear equation that partitions the matrix into the decoupled blocks. We will use a separable preconditioner based
on the perfectly vertically layered media in our solution procedure for the far-field subdomain. The far-field preconditioner is
based on a fast direct solver [16,33]. Since the media is vertically layered with the wavy interface, our preconditioner coin-
cides with the system matrix except the rows corresponding to unknowns near the interfaces. Thus, we can reduce iterations
on a small sparse subspace as has been shown in [22,24], for example, and Section 4.3. This procedure reduces GMRES iter-
ates onto a sparse subspace which leads to much reduced storage and computational requirements. The GMRES iteration is
evaluated by the partial solution method based on a cyclic reduction type fast direct solver. This reduction makes our iter-
ative method extremely efficient and enables us to solve systems with billions of unknowns as our numerical examples dem-
onstrate. With multigrid preconditioners like in [1,9,10] and with nonorthogonal grids in [28] such reduction cannot be
made and the solution of the model problem would require much more memory and computation. With the separation-
of-variables preconditioner in [31] the reduction of the iterations onto a sparse subspace can be made with the model
problem.

A similar domain decomposition approach to the one considered here was used for two-dimensional problems in [4,5,23].
Specifically, the approach in [23] is extended to the three-dimensional case. Such extension is nontrivial and involves the use
of higher order discretization in the layered media and efficient direct solver for the 3D separable preconditioner. Another
preconditioning technique for scattering problems in layered media without an object has been considered in [1,10,28,31],
for example, and with an object in [19].

The outline of the paper is the following. We begin by defining a model problem in Section 2. For the finite element dis-
cretization a weak formulation, meshes, a domain decomposition, the forming of linear systems and a modified quadrature
rule are described in Section 3. The iteration with a domain decomposition preconditioner is consider in Section 4. Also, the
solution procedures for the far-field and near-field preconditioners are given and how iterations can be performed in a sparse
subspace is described. Numerical experiments are presented in Section 5. They include an accuracy study for the discretiza-
tions and an efficiency study of the iterative solution. The paper ends with the conclusions in Section 6.

2. Model problem

We truncate the exterior domain into a rectangular parallelepiped domain P shown in Fig. 1. We pose an absorbing
boundary condition Bp ¼ 0 on the truncation boundary oP. For the water and sediment fluid region (PnX) we use the
Helmholtz equation to model the time-harmonic pressure variations p. In the elastic object (X) the displacement u is
described by the time-harmonic solution for the linear elastic wave equation. Coupling these equations leads to the partial
differential equation model:
r � 1
q
rpþ k2

q
p ¼ g in P nX

1
q

op
on
¼ x2u � n; �pn ¼ rðuÞn on oX

r � rðuÞ þx2qu ¼ 0 in X

Bp ¼ 0 on oP;

ð1Þ
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where q is a piecewise constant density, x is the angular frequency, k = x/c is the wavenumber and c is a piecewise constant
speed of sound. The function g is a compactly supported sound source and n denotes the outward unit normal. The stress
tensor r and the strain tensor � are defined by
rðuÞ ¼ 2l�ðuÞ þ kr � uI and �ðuÞ ¼ 1
2
ðruþ ðruÞTÞ:
In our model problem the Lame constants l and k are constants in the elastic object. They are defined in terms of the
compressional speed cc and the shear speed cs by
k ¼ qðc2
c � 2c2

s Þ and l ¼ qc2
s :
As the boundary condition Bp ¼ 0 in (1) we employ the second-order absorbing boundary condition described in
[2,16,23]. For practical purposes this usually leads to sufficiently small reflections from the truncation boundary oP.
An alternative would be to use a perfectly matched layer (PML) next to the truncation boundary oP. A properly chosen
PML would allow to use slightly smaller computational domain without reducing the accuracy. Using the formulation
and implementation of the PML described in [16,18] the computational efficiency would increase due to a smaller com-
putational domain. The six rectangular faces of the boundary oP are denoted by C±j, j = 1, 2, 3, whose outward normal
directions are given by the coordinate directions ±xj. The second-order absorbing boundary conditions on these faces
reads
� op
oxj
� ikp� i

2k

X
16l 6¼j63

o2p
ox2

l

¼ 0: ð2Þ
Furthermore, we have the conditions
�3
2

k2p� ik � op
oxm
� op

oxl

� �
� 1

2
o2p
ox2

j

¼ 0 ð3Þ
on each edge denoted by C(±m,±l) between the faces C±m and C±l and the conditions
�2ikpþ
X3

l¼1

� op
oxl
¼ 0 ð4Þ
on the eight corners of the rectangular parallelepiped P denoted by W.

3. Finite element discretization

In this section, we describe our finite element discretization of the model problem.

3.1. Weak form

For the finite element discretization, we have the weak formulation for the coupled partial differential equation (1) with
the absorbing boundary condition defined by (2)–(4): Find
p 2 V ¼ fv 2 H1ðP nXÞ : vjoP 2 H1ðoPÞ; vjCðm;jÞ
2 H1ðCðm;jÞÞ8Cðm;jÞ 2 Ug
and u 2 H1(X)d such that
Z
PnX

1
q
ðrp � rq� k2pqÞdx� ik

Z
oP

1
q

pqdsþ i
2k

X3

k¼1

X
j 6¼k

Z
Ck

1
q

op
oxj

oq
oxj

dsþ
Z

C�k

1
q

op
oxj

oq
oxj

ds

 !

þ 3
4

X
Cðm;jÞ2U

Z
Cðm;jÞ

1
q

pqdl� 1

4k2

X
Cðm;jÞ2U

Z
Cðm;jÞ

1
q

op
oxk

oq
oxk

����
k 6¼m;j

dlþ i
2k

X
x2W

1
q

pðxÞqðxÞ þ
Z

oX
ðx2u � nqþ v � npÞds

þ
Z

X
ðrðuÞ : �ðvÞ �x2qu � vÞdx ¼

Z
PnX

gqdx ð5Þ
for all (q,v) 2 V � H1(X)d. Here n denotes the unit outward normal vector of oX and U is the set of all edges of oP.

3.2. Domain decomposition and meshes

For the finite element mesh generation and also for the solution procedure, the computational domain P is divided into
two parts: the near-field domain X1 which includes the elastic object X and the far-field domain X2 = PnX1. The near-field
domain X1 is a rectangular parallelepiped which is only slightly larger than the elastic object X. Thus, the far-field domain is
vastly larger than the near-field one. For the model problem the domain decomposition is shown in Fig. 1.
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We first describe the generation of the mesh for the far-field domain X2. We start by defining a uniform orthogonal grid in
such a way that the corners of the near-field domain X1 are grid points. We adapt it to the interface between water and sed-
iment in order to have a second-order accurate approximation for the interface. We assume that the interface is defined by
the equation x3 = f(x1,x2) with a given function f. For each grid line in the x3-direction we find the point which is closest to the
interface and we move it in the x3-direction onto the interface. Then we define hexahedral elements given by the grid cells.
The hexahedral elements which are cut into two parts by the interface are replaced by a few polyhedral elements, for exam-
ple, prism elements. This is performed so that the interface does not cut any elements and on the cell faces which are not cut
by the interface the element faces are quadrilaterals. A similar mesh generation method for two-dimensional problems is
described in [6].

For the near-field domain X1 we use an unstructured mesh which is conforming on the interface between the near-field
and far-field domains, that is, the faces of elements on this interface match for elements in both domains. Fig. 2 shows a
crosscut of a coarse mesh.

3.3. Forming the system of linear equations

On hexahedral and prism elements we use trilinear and bilinear Lagrangian basis functions, respectively. For the
Helmholtz operator the coefficient matrix can be assembled from the element stiffness matrices Ke and the element mass
matrices Me defined by
Ke ¼
Z

Xe

rNðxÞTrNðxÞdx and Me ¼
Z

Xe

NðxÞTNðxÞdx; ð6Þ
where N(x) is a vector-valued function containing the values of nonzero basis functions in the finite element Xe. The elas-
ticity operator and boundary terms can be assembled in a similar manner element by element.

It is easier to perform integrations on a simple reference element instead of an element Xe. This is performed in the fol-
lowing way for a hexahedral element. Other elements can be treated in the same way. We choose the hexahedral reference
element to be [�1, 1] � [�1, 1] � [�1, 1]. The function bNðnÞ 2 R8 gives the values of Lagrangian basis functions associated
with the corners of the reference element. We denote the mapping from the reference element into the element Xe by
x(n), where n 2 [�1, 1]3. Furthermore, we denote the Jacobian of x(n) by J(n). The local element matrices in (6) can be com-
puted as
Me ¼
Z 1

�1

Z 1

�1

Z 1

�1

bNðnÞT bNðnÞdet JðnÞdn1 dn2 dn3 and

Ke ¼
Z 1

�1

Z 1

�1

Z 1

�1
GðnÞTGðnÞdet JðnÞdn1 dn2 dn3;

ð7Þ
where GðnÞ ¼ ðJðnÞTÞ�1rbNðnÞ. Usually the integrals in (7) are approximated using a quadrature rule
Z 1

�1

Z 1

�1

Z 1

�1
wðnÞdn1 dn2 dn3 �

Xnq

j¼1

wjwðnjÞ ð8Þ
instead of evaluating them analytically. A commonly used tensor product Gauss quadrature is defined by: wj = 1,
nj ¼ ð�

ffiffiffiffiffiffiffiffi
1=3

p
;�

ffiffiffiffiffiffiffiffi
1=3

p
;�

ffiffiffiffiffiffiffiffi
1=3

p
ÞT, j = 1, . . .,nq = 8. This rule leads to the exact local element matrices in (7) when the mapping

x(n) is linear.
Fig. 2. A crosscut of a small coarse mesh in the x1x3-plane.
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The assembling process leads to a system of linear equations
Ax ¼ b; ð9Þ
where the matrix A has entries with nonzero imaginary part due to absorption and it is non-Hermitian.

3.4. Modified quadrature rule

The finite element discretizations of acoustic scattering problems have some error in the speed of sound. The size of
this error depends on the order of the finite element, the number of mesh nodes per wavelength, and on the propagation
direction. This error causes a phase error in the solution which can accumulate to be large when the domain is large in
terms of wavelengths. The phase error is also called the pollution error and it has been considered in [20], for example. For
the trilinear elements the discrete wavelength is second-order accurate with respect to the number of nodes per wave-
length. There are several ways to reduce this error. Here we study the use of an extension of a modified quadrature rule
proposed for two-dimensional problems in [13]. This approach is well-suited for our discretizations and solution
procedure.

Using the generic form of the quadrature in (8), the modified rule is defined by: wj ¼ 1; nj ¼ ð�
ffiffiffiffiffiffiffiffi
2=3

p
; �

ffiffiffiffiffiffiffiffi
2=3

p
;

�
ffiffiffiffiffiffiffiffi
2=3

p
ÞT; j ¼ 1; . . . ;nq ¼ 8. That is, the quadrature points �

ffiffiffiffiffiffiffiffi
1=3

p
are replaced by �

ffiffiffiffiffiffiffiffi
2=3

p
. It was shown in [13] that for

two-dimensional problems this modification leads the discrete wavelength to be fourth-order accurate with respect to
the number of nodes per wavelength on uniform orthogonal meshes.

4. Iterative solution

4.1. Preconditioned iteration

The domain decomposition and discretization in Section 3.2 leads the system of linear equations (9) to have the block
form
Ax ¼
A11 A12

A21 A22

� �
x1

x2

� �
¼

b1

b2

� �
¼ b; ð10Þ
where the first block row corresponds to the interior of the near-field subdomain X1 and the second block row corresponds
to the far-field subdomain X2 and the interface between the subdomains formed by four faces of a rectangular
parallelepiped.

Based on the block structure in (10), we define an upper triangular domain decomposition preconditioner
B ¼
B11 B12

0 B22

� �
¼

A11 A12

0 B22

� �
: ð11Þ
Thus, the first block row is taken from the matrix A. The preconditioner block B22 is a Schur complement matrix which
will be described in Section 4.2. It is constructed in such a way that it corresponds to a scattering problem in the far-field
domain X2 with a nonlocal boundary condition on the interface between the subdomains. The preconditioner block A11

corresponds to a Dirichlet boundary value problem in the near-field domain X1. For these reasons, B is a Neumann–
Dirichlet-type domain decomposition preconditioner. They lead to a well conditioned matrix B�1A for the Poisson equation
and, thus, a rapid convergence of a preconditioned iteration; see [35], for example. Based on this we can expect the
conditioning to be good for low frequency problems. See the discussion in Section 5.2.

We use B as a right preconditioner and, thus, we solve iteratively the system of linear equations
AB�1v ¼ b ð12Þ
instead of the original system A x = b in (9). Once we have obtained the solution v of (12), we get x by solving the system B
x = v. For the iterations we use the GMRES method [34] without restart.

4.2. Far-field preconditioner

By discretizing the Helmholtz equation in the domain P, without the object X and with a perfectly horizontal surface of
the sediment, on a fully orthogonal n1 � n2 � n3 mesh we obtain a matrix
eC ¼ Cee Ce2

C2e C22

� �
; ð13Þ
where the blocks correspond to our domain decomposition. The matrix block Cee corresponds to an acoustic scattering prob-
lem without a scatterer in the near-field subdomain X1. The far-field preconditioner is the Schur complement matrix
B22 ¼ C22 � C2eC�1
ee Ce2: ð14Þ
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The solution y2 of the linear system B22y2 = f2 is obtained as the second block of y = (ye y2)T after solving the linear system
eCy ¼
Cee Ce2

C2e C22

� �
ye

y2

� �
¼

0
f1

� �
:

By renumbering the unknowns first in the x3-direction, then in the x2-direction, and last in the x1-direction the matrix eC
has a tensor product form
C ¼ H1 �M2 �M3 þM1 � H2 �M3 þM1 �M2 � ðH3 � eM3Þ: ð15Þ
The matrices H1 and H2 are stiffness matrices for one-dimensional problems in the x1 and x2 directions, respectively, with
modifications on the boundaries due to the absorbing boundary condition. Similarly, M1 and M2 are mass matrices for one-
dimensional problems in the x1 and x2 directions, respectively, with modifications on the boundaries. The matrices M3 and H3

are stiffness and mass matrices in the x3-direction which are scaled by the inverse of the density q. Furthermore, eM3 is a
mass matrix in the x3-direction which is scaled by the wave number squared k2 divided by the density q. More precisely
these matrices are as follows.

The dimension of the matrices H1 and M1 is n1 and they are given by
H1 ¼
1
h

1� ihk=2 �1
�1 2 �1

. .
. . .

. . .
.

�1 2 �1
�1 1� ihk=2

0BBBBBB@

1CCCCCCA;
and
M1 ¼
h
6

2þ 3i=ðhkÞ 1
1 4 1

. .
. . .

. . .
.

1 4 1
1 2þ 3i=ðhkÞ

0BBBBBB@

1CCCCCCA;
where h denotes the mesh step size in all directions and k is the wavenumber in the sediment. The n2 � n2 matrices H2 and
M2 are defined in the same way.

The n3 � n3 matrices H3, M3 and eM3 correspond to one-dimensional problems in the x3-direction. They can be assembled
from the element matrices as
H3 ¼ diag � ik1

2q1
;0; . . . ;0;� ikn3�1

2qn3�1

( )
þ
Xn3�1

j¼1

1
qj

PT
j

1
h

1 �1
�1 1

� �
Pj;

M3 ¼ diag
i

2k1q1
; 0; . . . ;0;

i
2kn3�1qn3�1

( )
þ
Xn3�1

j¼1

1
qj

PT
j

h
6

2 1
1 2

� �
Pj; and

eM3 ¼ diag
ik1

2q1
;0; . . . ;0;

ikn3�1

2qn3�1

( )
þ
Xn3�1

j¼1

k2
j

qj
PT

j
h
6

2 1
1 2

� �
Pj;

ð16Þ
where Pj is a 2 � n3 matrix with zeros everywhere except in columns j and j + 1 which form a 2 � 2 identity block matrix. The
coefficients qj and kj are the density and wavenumber on the jth one-dimensional element in the x3-direction.

With the modified quadrature rule in Section 3.4 the matrices H1, H2, and H3 stay the same. The matrix M1 is replaced by
M1m ¼
h

12

5þ 6i=ðhkÞ 1
1 10 1

. .
. . .

. . .
.

1 10 1
1 5þ 6i=ðhkÞ

0BBBBBB@

1CCCCCCA

and similarly M2 is replaced by M2m defined the same way as M1m. The matrices M3 and eM3 are replaced by M3m and eM3m,
respectively, which are obtained by replacing the matrices
h
6

2 1
1 2

� �
by

h
12

5 1
1 5

� �

in (16).
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4.3. Iteration on a sparse subspace

Here, we consider the structure of the vectors needed during the iterative solution of (12). Particularly, we show that
the vectors are very sparse. This reduces memory usage by orders of magnitude and due to this it is usually possible to
use the GMRES method without restarts. For a more detailed discussion on iterations on sparse subspaces we refer to
[22,24].

The jth GMRES iteration for solving the right preconditioned system AB�1v = b finds a vector vj from the Krylov
subspace
span fb;AB�1b; . . . ; ðAB�1Þj�1bg; ð17Þ
which minimizes the norm of the residual AB�1vj � b. We denote the vectors in the definition of the Krylov subspace as
b1 = AB�1b, . . .,bj�1 = (AB�1)j�1b. The vector vj is a linear combination of these vectors. Let us consider their structure. For
b1, we have the identity
b1 ¼ AB�1b ¼ bþ ðA� BÞB�1b: ð18Þ
From this we see that b1 2 X = span{b} + range(A � B). Similarly we can observe that for l = 2, . . ., j � 1,
bl ¼ ðAB�1Þlb ¼ AB�1bl�1 ¼ bl�1 þ ðA� BÞB�1bl�1
:

From this we see by induction that bl 2 X for l = 2, . . ., j � 1, and, thus, the Krylov subspace in (17) is a subspace of X.
Let us now consider the sparsity structure of the subspace X. Based on the above conclusion this will be also the sparsity

structure of the vectors needed during the GMRES iteration. We make an assumption that the vector b has at most Oðn1n2Þ
nonzero components. This means that the sound source can be a point, a line, or a surface. In our model problem the source is
a point. The matrix A � B has the block structure
A� B ¼
0 0

A21 A22 � B22

� �
: ð19Þ
From this it follows that the first block of vectors in range(A � B) is a zero block, that is, the part corresponding to the
near-field is zero. Due to the block A21 in A � B the vector components associated to the interface between the near-field
and far-field are nonzero in general.

The structure of the matrix block A22 � B22 in (19) is the most important one when considering sparsity of vectors in
range(A � B) as this far-field block is usually orders of magnitude larger than the near-field block. Due to our construction
of A22 and B22 they differ in the neighborhood of the surface of the sediment and on the interface between the far-field and
near-field domains. Near the surface of the sediment there are two reasons for differences. One is that the mesh used to com-
pute A is locally adapted to the surface while the mesh for B22 is not. From this it follows that the vector components cor-
responding to nodes on adapted elements are nonzero in general. The other reason is that in the construction of B22 the wavy
sediment surface was replaced by a straight one. This means that the material properties in the original problem and the
problem defining the preconditioner mismatch in the volume between the wavy and straight surfaces. Hence, the vector
components associated to mesh nodes in this volume are nonzero. Assuming that the deviation of the wavy surface from
the straight one is order of the mesh step size the number of nonzero components of the vectors is Oðn1n2Þ. Fig. 3 shows
the sparse subspace X for a crosscut of a problem.

Under the above assumptions vectors in the sparse subspace X have Oðn1n2Þ nonzero components. Thus, they can be
stored as Oðn3Þ times fewer floating point numbers than full vectors. Taking advantage of this in the GMRES iteration
reduces the memory and computational requirements essentially. More precisely, the needed memory is reduced by
the factor Oðn3Þ while the computational cost is reduced by the factor Oðjn3Þ, where j is the number of GMRES
iterations.
Fig. 3. The sparse subspace (denoted by red in color print or gray in b/w print) on a x1x3-crosscut for a partly rippled sediment.
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4.4. Partial solution technique for far-field preconditioner

During the iterative solution it is necessary to solve linear systems C v = y, where y belongs to a sparse subspace Y and,
furthermore, only the components of the solution y corresponding to this subspace are needed. These kinds of problems are
called partial solution problems and for problems with a tensor product matrix C a partial solution technique has been devel-
oped in [3,27]. With this technique the solution requires Oðn1n2n3 log n3Þ operations when assuming that the dimension of Y
is Oðn2n3Þ and the following implementation is used.

The partial solution technique is based on the diagonalization of the matrices H1 and M1 in the tensor product form (15).
For this purpose let us consider the generalized eigenvalue problem
H1wj ¼ kjM1wj;
where (kj,wj) is the jth eigenpair, j = 1, . . .,n1, and the eigenvector wj is normalized so that wT
j M1wj ¼ 1. The properties of

these eigenvalue problems have been studied in [11]. Based on these pairs we define the matrices K ¼ diagfk1; . . . ; kn1g
and W ¼ ðw1 � � � wn1 Þ. Then we have that WTH1W = K and WTM1W = I. Here and in the following, we denote the nj � nj

identity matrix by Ij. With these identities and properties of tensor products, we obtain
bC ¼ ðWT � I2 � I3ÞCðW � I2 � I3Þ
¼ K�M2 �M3 þ I1 � H2 �M3 þ I1 �M2 � ðH3 � eM3Þ;

ð20Þ
which is a block diagonal matrix having n1 diagonal blocks of size n2n3 � n2n3. Using the diagonalization (20) the linear sys-
tem C v = y can be solved in the following three steps:

1. Compute ŷ = (WT � I2 � I3)y.
2. Solve bCv̂ ¼ ŷ.
3. Compute v ¼ ðW � I2 � I3Þv̂.

Let us consider the steps 1 and 3. The straightforward implementation of the multiplications in these steps require
Oðn2

1n2n3Þ operations. This can be reduced by taking advantage of the sparsity of y and the required components of v. In
the step 1. only the nonzero terms of y need to be multiplied and in the step 3. only the needed components of v are com-
puted. We assumed in the above that y has Oðn2n3Þ nonzero components and the same amount of the components of v are
required. Then the computational cost can be reduced to Oðn1n2n3Þ operations for both steps.

Due to the block diagonal structure of bC , the step 2 decouples to n1 solutions of linear systems with n2n3 � n2n3 block
tridiagonal matrices. Each of these systems can be solved efficiently using, for example, the cyclic reduction type fast direct
solver introduced in [36] and further considered in [16,25,33]. This method recursively solves partial solution problems.
When this is based on a split in the x3-direction there are Oðlog n3Þ recursion levels and at each level the solution requires
Oðn2n3Þ operations. For the detailed description of this method we refer to [16,32,33]. Thus, the computational cost to solve
each of these n1 problems is Oðn2n3 log n3Þ operations and the total cost of the step 2 is Oðn1n2n3 log n3Þ operations.

A memory efficient way to implement the above three step procedure is to perform the steps for one eigenpair (kj,wj) at a
time. Thus, the steps are to multiply y by wT

j � I2 � I3, to solve the n2n3 � n2n3 linear system corresponding to kj, and compute
only the required component of the multiplication by wj � I2 � I3. This way, storing the intermediate vectors requires only
Oðn2n3Þ double precision numbers. A well-suited data structure for the sparsity pattern is to have three integer arrays storing
the index triplet for each nonzero component. Using these arrays the above steps 1. and 3. can be implemented easily.

4.5. Multiplications in each iteration

During the GMRES iteration we need to perform multiplications of the form g = A B�1v with a given vector v belonging to
the subspace X. Each of these multiplications can be performed in three steps:

1. Solve
B22y2 ¼ ðC22 � C2eC�1
ee Ce2Þy2 ¼ v2
using the partial solution method as described in Sections (4.2) and (4.4).
2. Solve
A11y1 ¼ �A12y2 ð21Þ
using the near-field solver as described in Section 4.6.
3. Compute
g2 ¼ A21y1 þ A22y2:
As the resulting vector g belongs on the sparse subspace X the first vector block y1 of y is zero block and the second block y2 is
very sparse as described in Section 4.3.
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4.6. Near-field solver

We form and solve the near-field system of linear equations in (21) using the COMSOL Multiphysics software [7]. This
problem is a discretized coupled fluid-structure problem in the near-field subdomain X1 with a Dirichlet boundary condition
on the interface between the subdomains. In the solution we employ the GMRES solver with a two level geometric multigrid
preconditioner [9,14]. The coarse grid problem is solved using UMFPACK (unsymmetric multifrontal sparse LU factorization
package) [8]. The projection of the residual vector onto the coarser level is obtained by multiplying it by the transpose of the
prolongation (interpolation) matrix. The presmoothing is performed using SOR and the postsmoothing is performed also by
SOR, but with reverse ordering of unknowns. The relaxation parameter in SOR is x = 0.25.

5. Numerical experiments

5.1. Grid refinement analysis

In this section, we present a grid refinement analysis for the second-order and fourth-order discretization. Our analysis is
conducted for an acoustic scattering problem in the layered media with the straight sediment and no target. The test fre-
quency is 3.75 kHz. The computational domain is [0 m,12 m] � [�0.4 m, 0.4 m] � [�0.8 m, 4 m] and the point source is lo-
cated at [0.4 m, 0 m, 3.6 m]. The plane interface between the water and sediment is at x3 = 0 m. The density of water is
1000 kg/m3 and the speed of sound in it is 1482 m/s. In the sediment the density is 2000 kg/m3 and the speed of sound is
(1668–16.8i)m/s, where the imaginary part attenuates waves.

For this problem, we do not have the analytic solution. In order to study the order of convergence, we compared the com-
puted solutions against the solution q2401�161�961 obtained using the fourth-order discretization on the finest mesh given by
a 2401 � 161 � 961 grid. The l2-norm approximate error is given by
Table 1
The grid

N

151 � 1
301 � 2
601 � 4
1201 �
2401 �
ENð�Þ ¼
k�N � q2401�161�961k2

kq2401�161�961k2
:

We define the order of convergence as
Orderð�Þ ¼ log2
EN=2ð�Þ
ENð�Þ

:

In Table 1, we report the results for the second-order solution (p) and the fourth-order solution (q) for meshes with 5, 10,
20, 40 and 80 points per wavelength (k/h). We can see that the method is second-order accurate for the second-order dis-
cretization. On the sediment interface, the accuracy of the fourth-order scheme is reduced to second-order due to the jump
in the material properties. The error on the interface starts to dominate the phase error on finer meshes eventually leading to
second-order convergence. Nevertheless, with the fourth-order scheme the error is much smaller for practical mesh step
sizes. The accuracy for the 10 points per wavelength with the fourth-order scheme is comparable to the 80 points per wave-
length with the second-order scheme. Thus we use eight points per wavelength with the fourth-order scheme for our exte-
rior domain discretization. In Fig. 4 we show the real part of the total field 8 cm (one mesh step for the coarsest grid) above
the sediment for the coarsest (five points) and the finest (80 points) grids with the fourth-order discretization. The five points
scheme captures the phase of the scattering field reasonably well. Fig. 5 shows the results for 10 and 80 points second-order
scheme, and 10 points fourth-order scheme. The second-order solution with 10 points is inaccurate while the two other solu-
tions are fairly accurate and comparable to each other. This clearly demonstrates the effectiveness of the fourth-order
discretization.

5.2. Acoustic scattering by a buried elastic target in wavy sediment

Our scattering test problem is similar to the experimental test setup used for measurements in [30]. The scatterer is an
0.5 m long aluminum cylinder with one feet diameter (0.3048 m). The axis of the cylinder is the line segment with endpoints
(0 m, 0 m, 0.18 m) and (0 m, 0.5 m, 0.18 m). The computational domain is [�10.5 m, 1.35 m] � [�0.25 m, 0.75 m] � [�0.5 m,
refinement analysis for the test problem

k/h EN(p) Order(p) EN(q) Order(q)

1 � 61 5 1.6771 6.2599 � 10�1

1 � 121 10 1.8543 4.2801 � 10�2 3.87
1 � 241 20 5.4960 � 10�1 1.75 7.2334 � 10�3 2.56
81 � 481 40 1.3834 � 10�1 1.99 1.4550 � 10�3 2.31
161 � 961 80 3.4498 � 10�2 2.00 0
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Fig. 4. The total field solutions for the fourth-order discretization on the meshes 151 � 11 � 61 (5 points) and 2401 � 161 � 961 (80 points).
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Fig. 5. The total field solutions for the second-order discretization on the meshes 301 � 21 � 121 (10 points) and 2401 � 161 � 961 (80 points), and the
fourth-order discretization on the mesh 301 � 21 � 121 (10 points).

Fig. 6. Real (left) and imaginary (right) part of the scattered field from the COMSOL computation (up) and the coupled code (down).
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Table 2
Iteration counts and CPU times for computing the scattering by the aluminum cylinder

f (kHz) N Iteration CPU (min)

5 1186 � 101 � 535 17 48
10 1186 � 101 � 535 35 102
15 1186 � 101 � 535 51 199
20 1186 � 101 � 535 62 900
25 1581 � 121 � 713 52 4020
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Fig. 7. Scattering by the aluminum cylinder at different frequencies: (a) 5 kHz, (b) 10 kHz, (c) 15 kHz and (d) 20 kHz.
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Table 3
Iteration counts and CPU times for the near-field preconditioned GMRES solver

f (kHz) Iteration CPU (min)

5 9 1.1
10 14 1.3
15 47 2.0
20 190 14.3
25 300 62.0

Table 4
Iteration counts and CPU times for computing the wave propagation in water and sediment without a target

f (kHz) N Iteration CPU (min)

5 1186 � 101 � 535 12 16
10 1186 � 101 � 535 15 19
15 1186 � 101 � 535 20 25
20 1186 � 101 � 535 25 30
25 1581 � 121 � 713 30 89
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4.84 m] and the point source is located at [�10 m, 0.25 m, 4.34 m]. The partial rippled interface between the water and sed-
iment is defined by
x3 ¼ f ðx1Þ ¼
0:44 mþ ð0:0381 mÞ cosð2pðx1 � 0:18Þ=ð0:75 mÞÞ; �2:2575 m 6 x1 6 1:1175 m

0:44 m; otherwise:

�

Thus, the top of the cylinder is 0.108 m below the mean level of the sediment surface. The properties of the water and sed-
iment are the same as in the above section. The density of the cylinder aluminum is 2730 kg/m3 and its compressional speed
and shear speed are cc = 6568 m/s and cs = 3149 m/s, respectively. The damping parameter is set as Raleigh damping with the
mass damping parameter 1 and the stiffness damping parameter 0.001. The near-field subdomain X1 is [0 m,
0.36 m] � [�0.25 m, 0.75 m] � [0 m, 0.36 m].

We compared the solutions from our coupled far-field and near-field solver and the COMSOL Multiphysics solver for a low
frequency 1.5 kHz. The plots of the real and imaginary parts of the solutions in Fig. 6 show the agreement of the solutions to
be good. The COMSOL solver required 128 CPU seconds and our coupled solver required 48 CPU seconds. The COMSOL solver
cannot solve high frequency problems (>4 kHz) as it either runs out of memory or requires unreasonable amount of time.

For the higher frequencies with required finer discretizations the problem has from 100 million to 1 billion of unknowns.
In Table 2, the iteration counts and CPU times for problems with different incident frequencies are given. For the frequencies
5 kHz, 10 kHz, 15 kHz and 20 kHz we use a 1186 � 101 � 535 mesh leading to 30, 15, 10 and 7.5 points per wavelength,
respectively. For 25 kHz problem we use 1581 � 121 � 713 mesh having eight points per wavelength. Times in the table
are given in minutes on a PC with an Intel Xeon 3.20 GHz processor with 32 GBytes of memory. The GMRES iterations were
terminated when the norm of the residual vector was reduced by the factor 10�6. In Fig. 7, the amplitude of the scattered
fields at 5–20 kHz are shown.

In order to understand the behavior of the domain decomposition solver better, we performed numerical experiments
with the near-field and far-field solvers. The iteration counts and CPU times for the near-field GMRES solver are given in Ta-
ble 3. The multigrid preconditioner in the near-field solver is reasonably efficient for low frequency problems (5–15 kHz)
while for higher frequencies (20–25 kHz) it is inefficient. The convergence of the solver without an elastic target is studied
in Table 4. In this case the scattering is only due to the interface between water and sediment, and it is not necessary to solve
near-field problems. The number of iterations grows approximately linearly with respect to the frequency. The iteration
counts with the target in Table 2 are roughly twice those without a target in Table 4. The CPU time with the target is three
times larger at 5 kHz while it is about 45 times larger at 25 kHz. Based on these observations we conclude that the growth of
the CPU time is mainly due to the near-field solver for our particular implementation. Tables 2 and 4 also indicate that the
GMRES iterations number increases as the frequency increases. It coincides with our discussion in Section 4.1, that is, the
conditioning is good for low frequency problems. We are currently working on improving the near-field discretization
and solver.

6. Conclusions

We have developed an efficient numerical method for computing time-harmonic acoustic scattering by an elastic object
in three-dimensional layered media. The infinite domain is truncated to a rectangular parallelepiped and a second-order
absorbing boundary condition is posed on the truncation boundary which usually leads to sufficient accuracy for practical
purposes. Our discretization uses a modified trilinear finite element discretization with fourth-order phase accuracy. We
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studied the accuracy of this discretization in a 30 wavelengths long computational domain with layered media and without a
target. In the far-field 10 nodes per wavelength lead to about 4% error while the standard finite element discretization re-
quired about 80 nodes per wavelength to reach the same accuracy level.

The discretization of our model problem leads to order of 100 million unknowns. In order to be able to solve these prob-
lems on a PC with 32 Gbytes of memory a domain decomposition preconditioner was developed. The domain was decom-
posed into a small near-field subdomain enclosing the target and a vastly larger far-field subdomain. The preconditioner for
the far-field subdomain employs a fast direct solver based on the diagonalization of matrices in tensor product form. This
together with reducing the GMRES iterations onto a small sparse subspace associated with the interfaces enabled the solu-
tion on the PC. The iterations converged in some tens of iterations with the iteration count growing roughly linearly with the
frequency. The near-field subdomain problems were solved iteratively using the COMSOL multiphysics software. The num-
ber of these inner iterations seems to grow exponentially with the frequency. Even though the near-field problem was three
orders of magnitude smaller it required much more computational effort. Thus, improvements on the near-field solver would
increase the efficiency of the solution procedure the most.
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